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Abstract. We present the IBM systems for the Rich Transcription 2007
(RT07) speaker diarization evaluation task on lecture meeting data. We
first overview our baseline system that was developed last year, as part
of our speech-to-text system for the RT06s evaluation. We then present
a number of simple schemes considered this year in our effort to improve
speaker diarization performance, namely: (i) A better speech activity
detection (SAD) system, a necessary pre-processing step to speaker di-
arization; (ii) Use of word information from a speaker-independent speech
recognizer; (iii) Modifications to speaker cluster merging criteria and the
underlying segment model; and (iv) Use of speaker models based on
Gaussian mixture models, and their iterative refinement by frame-level
re-labeling and smoothing of decision likelihoods. We report development
experiments on the RT06s evaluation test set that demonstrate that these
methods are effective, resulting in dramatic performance improvements
over our baseline diarization system. For example, changes in the cluster
segment models and cluster merging methodology result in a 24.2% rel-
ative reduction in speaker error rate, whereas use of the iterative model
refinement process and word-level alignment produce a 36.0% and 9.2%
speaker error relative reduction, respectively. The importance of the SAD
subsystem is also shown, with SAD error reduction from 12.3% to 4.3%
translating to a 20.3% relative reduction in speaker error rate. Unfor-
tunately however, the developed diarization system heavily depends on
appropriately tuning thresholds in the speaker cluster merging process.
Possibly as a result of over-tuning such thresholds, performance on the
RT07 evaluation test set degrades significantly compared to the one ob-
served on development data. Nevertheless, our experiments show that
the introduced techniques of cluster merging, speaker model refinement
and alignment remain valuable in the RT07 evaluation.

1 Introduction

There are three tasks evaluated this year in the Rich Transcription 2007 (RT07)
evaluation campaign [1], conducted by the National Institute of Standards and
Technology (NIST): Speaker diarization (SPKR), speech-to-text (STT), and
speaker-attributed STT (SASTT), a task newly introduced this year. The three
are very much interconnected, with SPKR being an important pre-processing



step to STT, but also a required part of the final SASTT output. The latter is
due to SASTT aiming not only to correctly transcribe spoken words, but also to
identify the generically labeled speaker of these words. A better SPKR system
would therefore produce better SASTT results. An additional pre-processing step
in this “cascade” of tasks is speech activity detection (SAD). This has been a
separate evaluation task in the RT Spring 2006 (RT06s) evaluation campaign [2],
but is now considered a “mature” task and, as such, has been sunset in RT07.
Nevertheless, SAD remains an important step prior to speaker diarization.

The goal of speaker diarization is to label each speech segment (as provided
by the SAD pre-processing step) with speaker information. The SPKR task is
therefore sometimes referred to as the “who spoke when” problem [2]. Typically,
the number of speakers present is not known a-priori. Such information needs to
be determined automatically in the diarization task. In recent years, significant
research effort has been devoted to the problem [3–6], with progress rigorously
benchmarked in NIST speech technology evaluations [7].

There exist two main approaches to speaker diarization: The first is a bottom-
up approach, i.e. hierarchical, agglomerative clustering [8–10], and the second is
top-down, employing evolutive hidden Markov models (E-HMMs) [4], starting
with one speaker and detecting and adding speakers in succession. Agglomerative
clustering generally involves several steps: Initially, speech segments, as deter-
mined from SAD output, are investigated for possible speaker change points [11].
The output of change point detection is then fed into a speaker clustering proce-
dure. Clustering stops when a predetermined criterion is satisfied (for example
a drop in overall data likelihood from a merge). The limitation of this approach
is that errors in the first two steps carry over to the final clustering step.

An improvement is to jointly optimize segmentation and clustering using
an iterative procedure based on Gaussian mixture models (GMMs) of each clus-
ter [12]. Recently, ICSI proposed purification algorithms for the iterative segmen-
tation scheme to improve performance. Impure segments are removed before the
cluster merging step, and impure frames are removed from GMM training and
cluster merging [8]. LIMSI proposed to use speaker identification combined with
the Bayesian information criterion (BIC) to improve performance [9, 13]. How-
ever, this approach may not work well in lecture data, where many of the speakers
(audience members asking questions) do not have enough data to generate reli-
able speaker models. The same problem occurs with the E-HMM scheme, where
speaker models are needed. This approach usually detects the most dominant
speakers well, but misses speakers with little data [4].

Although it is allowed to use STT system output to assist speaker diarization
in the NIST RT evaluation, most submitted systems do not take advantage of
word output from the STT task [2]. To our knowledge, such information has in
the past been exploited by LIMSI, for example use of spoken cues (“Back to you,
Bob”), as a means to add information to the diarization output for Broadcast
News data [14], as well as for removal of short-duration silence segments when
training speaker models [9].



In this paper, we present details of our SPKR system evaluated in the RT07
campaign for the lecture meeting domain. This represents the first year that
the IBM team participated in the RT SPKR evaluation, although a baseline
system has been developed last year as an STT pre-processing step [16] – but
not officially evaluated. However, a separate SAD system had been evaluated [15].
A number of modifications have been made to these systems, resulting in the
RT07 IBM SPKR system. In summary:

• A simpler SAD algorithm is employed, compared to the one in RT06s [15]. It
is based on a speech/non-speech HMM decoder, set to an optimal operating
point for missed speech / false alarm speech on development data. Because
missed speech cannot be recovered in following speaker segmentation steps,
the operating point is selected to miss only a small amount of speech, but
at the same time not to introduce too many false alarms.

• Word information generated from STT decoding by means of a speaker-
independent acoustic model is used to improve speaker clustering. Such in-
formation is useful for two reasons: It filters out non-speech segments, and
it provides more accurate speech segments to the speaker clustering step,
removing short silence, background noise, and vocal noise that do not dis-
criminate speakers and cause overlaps of cluster models. As a result, only
speech frames are used to train and compare cluster models.

• GMM-based speaker models are built from an available segmentation (for
example, as provided by SAD), and the labels of each frame are refined using
these GMM models, followed by smoothing the labeling decision with its
neighbors. A result of re-classification and smoothing is the possibility that
the original segments can be further segmented, in effect locating speaker
change points within the initial segmentation. This process is significantly
better than last year’s change point detection approach.

The rest of the paper is organized as follows: Section 2 briefly overviews the
baseline SAD and speaker diarization systems developed in RT06s. Section 3
presents RT07 modifications to the components of the baseline systems to im-
prove diarization performance. Section 4 describes two system level variations
taking advantage of the improved components. Section 5 is devoted to the ex-
perimental study and discussions, and Section 6 concludes the paper.

2 Baseline SAD and SPKR Systems

Speech activity detection (SAD) is a prerequisite to both SPKR and STT. After
SAD, long segments of non-speech (silence or noise) are removed, and the audio
is partitioned into shorter segments for fast decoding and speaker segmentation.
For the RT06s evaluation, the IBM team developed two SAD systems: The one
was officially evaluated, and it was based on a complex scheme of fusing acous-
tic likelihood and energy features for modeling three classes by full-covariance
GMMs. During testing, the classes were collapsed into speech and silence, and
appropriately smoothed to yield the final SAD result. Significant performance



gains were observed when combining SAD results across multiple far-field chan-
nels by simple “voting” (decision fusion) [15].

The second scheme was employed as a first step in the IBM RT06s STT sys-
tem, but was not evaluated separately [16]. We use this scheme as the first step
for our SPKR/STT development this year. In more detail, it was an HMM-based
speech/non-speech decoder; speech and non-speech segments were modeled with
five-state, left-to-right HMMs. The HMM output distributions were tied across
all states and modeled with a mixture of diagonal-covariance Gaussian densi-
ties. The non-speech model included the silence phone and three noise phones.
The speech model contained all speech phones. Both were obtained by applying
a likelihood-based, bottom-up clustering procedure to the speaker-independent
acoustic model developed for STT, but adapted to the CHIL part of the training
data by maximum a-posteriori (MAP) adaptation.

Our baseline speaker diarization system was originally developed for the
EARS transcription system [17]. The framework is similar to the one described
in [10], and it’s briefly summarized here: All homogeneous speech segments as
determined by the SAD output were modeled using a single Gaussian density
function with diagonal covariance, and were bottom-up clustered into a pre-
specified number of speaker clusters using K-means and a Mahalanobis distance
measure. This distance measure between two D-dimensional Gaussians of diag-
onal covariance, denoted by N(µk, σk), k = i, j, is given by

dist(i, j) =

D∑

d=1

(µi(d) − µj(d))2

(σ2
i (d) + σ2

j (d))
. (1)

For CHIL data, the number of speaker clusters was set to four for each lecture.
This particular scheme proved sufficient for STT, but was never evaluated as a
separate SPKR system in RT06s. For both SAD and SPKR tasks, 24-dimensional
PLP acoustic features were used.

3 Improvements over Baseline Systems

We now proceed with details of the improvements introduced in RT07 to our
SPKR system.

3.1 Improvement on SAD

By varying the number of Gaussians for speech and non-speech models, we are
able to obtain different operating points of SAD performance, i.e. the ratio of
missed speech vs. false alarm speech. For example, if too many Gaussians are
used for speech, then the false alarm rate becomes high; if too many Gaussians
are used for non-speech, then the miss rate grows. Because the missed speech
cannot be recovered in the following speaker segmentation step, we choose an
operating point that would only miss a very small amount of speech, but at
the same time would not introduce too many false alarms. In fact, this simple



scheme works extremely well. Interestingly, at that operating point, no gain is
obtained by combining multiple distant microphone SAD outputs, in contrast
to the RT06s system [15]. The output of SAD is purified as discussed next.

3.2 Incorporating Word Output Alignments

In general, the speaker diarization task is performed before decoding. Here we
propose a slight variation, namely to use the decoded output from a speaker-
independent acoustic model in order to further refine SAD output, prior to its
use in the speaker diarization step. The information is used in two ways:

• We remove segments with only silence, background noise, and vocal noise.
These are segments that SAD failed to identify as non-speech.

• In the subsequent speaker clustering steps, we ignore frames that correspond
to silence, background noise, and vocal noise.

The first constitutes a segment-based purification, whereas the second is frame-
based purification [8]. By identifying non-speech frames and removing them from
the speaker model training step, one expects better speaker clustering.

3.3 Clustering and Refinement

An important change from our baseline SPKR system is that instead of using
a fixed number of desired speakers, we estimate the initial number of speakers
according to a minimum number of expected frames. This process results in
an upper bound on the expected number of speakers. Subsequently, speaker
clustering and refinement reduce this number, as discussed in this section.

An additional change has to do with the employed acoustic features. Instead
of 24-dimensional PLPs, we switch to 19-dimensional MFCCs, with the energy
term dropped. Such features constitute the traditional feature space used for
speaker recognition.

A crucial step in the whole process is the maximum-likelihood based cluster-
ing and GMM refinement. This consists of the following steps:

• Initialization: To build the initial speaker models we use the K-means pro-
cess as follows: We take the segments sequentially partitioned equally to each
speaker. A single-mixture full-covariance (FC) Gaussian for each speaker
model is then estimated using a maximum likelihood criterion on each of
these segments. In parallel, segments generated by the SAD output are
modeled by a single mixture FC model. Subsequently, the speaker models
are re-estimated by maximum likelihood using the SAD segment sufficient
statistics. In more detail, each SAD segment model is assigned to the best
speaker model according to a maximum per-frame log-likelihood criterion;
i.e., for speaker model i and SAD segment model j , the following are used

LL 1(i, j) = ΣSAD(j) + (µSPK(i) − µSAD(j)) (µSPK(i) − µSAD(j))
T

LL(i, j) = −
1

2
trace (Σ−1

SPK(i)LL1(i, j)) −
1

2
log |ΣSPK(i)| , (2)



where (µ, Σ) denote Gaussian model mean and full covariance. The assign-
ment and re-estimation steps are run for ten iterations.

• Cluster Merging: At each step in the bottom-up clustering process, we com-
bine the two nodes that result in the smallest likelihood loss, if merged. We
stop, when no two nodes can be combined with a loss smaller than a pre-set
threshold. The likelihood loss associated with merging clusters i and j is

dist(i, j) = N ( log |Σ| − pi log |Σi| − pj log |Σj| ) , (3)

where N = ni +nj is the total number of frames assigned to clusters i and j ,
and the priors on clusters are determined as pi = ni/N . Therefore, at each
step in the merging process, the smallest dist(i, j) determines which clusters
to merge. The result is then compared against a pre-specified threshold λ ,
causing the merging process to be terminated if dist(i, j) > λ .

• Refinement: From the merging step we have frame-level assignments to each
of the remaining speaker models. Using these indices, we build diagonal-
covariance GMMs with ten mixtures (an empirically determined number).
This is accomplished by clustering and splitting, running expectation-maxi-
mization steps between splits. From the resulting refined models we then
compute the per-frame likelihoods. The frame-level likelihoods are subse-
quently smoothed over a 150 msec window (± 75 msec), and the frame is
assigned to the appropriate model, according to the maximum score. With
these new frame-level assignments the entire refinement process can be re-
run. We find that after two iterations frame-level assignments stabilize.

4 SPKR System Variations Used

In our experiments, in addition to the baseline, we consider two similar SPKR
systems – referred to as “IBM 1” and “IBM 2” – that adopt most of the above
improvements. In particular, both take advantage of improved SAD and word-
level alignment and employ sequential cluster pre-initialization. The difference
lies in the clustering metric and the use of the secondary GMM refinement step:

• IBM 1: During cluster merging, the Mahalanobis distance metric (1) is used
on the over-segmented input, instead of (3). The merging process is termi-
nated when a pre-specified threshold value is reached – determined on devel-
opment data. Use of the word-level alignment information results in system
“IBM 1 + align”. Note that the Mahalanobis distance metric of equation (1)
is used in both the SAD segment assignment to a speaker cluster and the
distance metric, when deciding which clusters to merge.

• IBM 2 is generated by the initialization and cluster merging steps, as de-
scribed in Section 3.3. We denote use of word-level alignments and the GMM
refinement step by “IBM 2 + align” and “IBM 2 + refine”, respectively.

5 Experiments and Results

Our experiments are conducted on the lecture meeting data collected by five
partners of the CHIL consortium (“Computers in the Human Interaction Loop”)



Table 1. Overall diarization error (DER), %, of the baseline and improved (tuned)
speech activity detection (SAD) systems on our development set based on input from a
single distant microphone (SDM). The two systems use different numbers of Gaussians
to model speech and silence. DER break-down into its two components (missed and
false alarm errors) is also shown.

systems missed (%) false alarm (%) DER (%)

sad.16.16 (baseline) 0.3 16.5 16.8
sad.100.32 (improved) 1.3 3.0 4.3

[18]. For development data, necessary for SAD and cluster merging threshold tun-
ing, we use part of the RT06s evaluation test set containing 28 lecture meetings
recorded in CHIL smart rooms. From this set, 27 lectures are used as the de-
velopment set, with one lecture excluded due to it being closer to the so-called
“coffee-break” scenario [1]. Of course, for final system evaluation the lecture
meeting part of the RT07 test set is used. Note that all experiments in this sec-
tion are reported for the single-distant microphone (SDM) condition, as specified
in the NIST evaluation plan [1].

In accordance to NIST scoring, results are reported in terms of diarization
error rate (DER). DER is calculated by first finding the optimal one-to-one map-
ping between reference speakers and the hypothesized ones, and then computing
the percentage of time that is wrongly assigned according to the optimal map-
ping. DER includes speaker error time, missed speaker time, and false alarm
speaker time, thus also taking SAD errors into account [2]. SAD performance
is measured in DER as well, but with all speakers labeled simply as speech.
Segments with overlapping speech are also included in the DER computation.

5.1 Development Set SAD and SPKR Results

As already mentioned, there exists a tradeoff in SAD system performance be-
tween false accepts and missed speech, with the operating point being a function
of the number of Gaussians modeling the speech and silence classes. In our re-
ported experiments, we imply this dependence by denoting the SAD systems as
“sad . < number of speech Gaussians > . < number of silence Gaussians >”. In
particular, the baseline system is “sad.16.16” and the improved (after tuning) is
“sad.100.32”. Table 1 compares performance of these two systems at the SDM
condition. Notice the significant reduction in false alarm rate with a small only
impact on missed speech over the baseline. The overall SAD DER is reduced by
74.4% relative.

We now proceed to report experiments on the speaker diarization system.
We first investigate the impact on DER of the cluster merging threshold. Fig. 1
illustrates results for three configurations of the “IBM 2” system, namely “IBM
2”, “IBM 2 + align”, and “IBM 2 + refine”. Not depicted is the “IBM 2 + align
+ refine” system, as no gain was achieved using alignment following refinement.
This figure demonstrates that the optimal cutoff threshold lies around 7000.

Table 2 provides a comparison between the baseline SPKR system (the crude
RT06s system that uses a pre-set number of speaker clusters) and the “IBM
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Fig. 1. Impact of the cluster merging threshold on DER on our development set, de-
picted for three variants of the “IBM 2” speaker diarization system.

1” and “IBM 2” systems, under various configurations concerning the use of
alignment and refinement, but in all cases at their respective optimal cluster
merging thresholds. Note that the cluster merging thresholds differ, due to the
use of different distance metrics (see (1) and (3)). Unfortunately, due to lack of
time, we did not explore the “IBM 1 + refine” system.

Finally, Fig. 2 illustrates the effect of SAD error rate (missed plus false alarm
errors) on SPKR DER. In this experiment, we increase SAD error from the 4.3%
value of Table 2 to 12.3%, by switching to a “sad.256.16” system. Notice that the
average reduction in speaker error rate by employing the selected “sad.100.32”
system is 20.3% over the use of “sad.256.16”. In particular, at the optimal cluster
merging threshold of 7000, we observe a 56.7% relative reduction in speaker error
rate (from 7.4% to 3.2%).

5.2 Evaluation Results

The IBM team submitted the following systems relevant to speaker diarization
for the RT07 evaluation:

Table 2. DER and its break-down, %, for various SPKR systems measured on devel-
opment data, depicted at their optimal cluster merging thresholds (if applicable).

systems opt. thresh. missed (%) false alarm (%) speaker error (%) DER (%)

IBM baseline — 0.3 16.5 53.3 70.1
IBM 1 0.6 1.3 3.0 6.6 10.9
IBM 1+align 0.6 1.3 3.0 5.6 9.9
IBM 2 7000 1.3 3.0 5.0 9.3
IBM 2+align 6500 1.3 3.0 5.5 9.8
IBM 2+refine 7000 1.3 3.0 3.2 7.5
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Fig. 2. Speaker error rate on development data as a function of the cluster merging
threshold for two different SAD systems with error rates of 4.3% and 12.3%.

• Speaker Diarization (SPKR) task: With the speaker diarization deadline a
week before SASTT was due, and owing to the fact that the “IBM 2” system
was not ready by the first deadline, for SPKR we submitted the “IBM 1 +
align” system. Threshold tuning was applied per recording site, tuned on the
development set.

• Speaker-Attributed Speech-To-Text (SASTT) task: By the SASTT deadline,
the “IBM 2 + refine” system was ready. Results from this system were used
in SASTT with a cluster merging threshold of 7000.

• Speech Activity Detection (SAD) subsystem: The “sad.100.32” system was
used in both cases.

We now proceed to report evaluation set results using the above systems.
Table 3 summarizes experiments on the 32-segment RT07 test set. We observe
that the overall SAD performance (missed and false alarm errors) remains rel-
atively consistent, degrading from 4.3% on development data to 6.3% on the
evaluation set. On the other hand, speaker diarization performance does not
show similar stability. It is clear from the table that the chosen thresholds in our
submitted systems (SASTT and SPKR), tuned on basis of development data,
do not generalize well to the test set. In particular, it seems that our primary
system submitted to the SPKR task (“IBM 1 + align”) gets penalized by the se-
lection of site-specific thresholds – as compared to the use of a site-independent
threshold of 0.6 determined on development data (see also Table 2). In general,
it also seems that this system is slightly less sensitive to the tuned threshold
than the “IBM 2 + refine” system, submitted to the SASTT task. Nevertheless,
the “IBM 2 + refine” system has the potential to generate a lower DER – if only
the optimal threshold of 15000 were used!

It is interesting to note that the “IBM 1 + align” system improves per-
formance over its “IBM 1” variant for both development and evaluation data,



Table 3. DER and its break-down, %, on the RT07 test set for the two IBM systems
in various configurations, and for various thresholds tuned on development or evalu-
ation data. The latter are marked with “opt.”, and of course constitute a “cheating”
experiment. The systems in bold are the ones officially benchmarked in RT07.

systems threshold missed false alarm speaker error DER

IBM 1 0.6 2.4 3.9 21.9 28.2
IBM 1 0.9 (opt.) 2.4 3.9 18.5 24.8
IBM 1+align site-spec. (RT07 SPKR) 2.4 3.9 23.7 30.0
IBM 1+align 0.6 2.4 3.9 21.0 27.3
IBM 1+align 0.85 (opt.) 2.4 3.9 18.7 25.0
IBM 2 7000 2.4 3.9 24.8 31.1
IBM 2 15000 (opt.) 2.4 3.9 17.6 23.9
IBM 2+refine 7000 (RT07 SASTT) 2.4 3.9 21.4 27.7
IBM 2+refine 15000 (opt.) 2.4 3.9 16.5 22.8

achieving a relative 9.2% DER reduction (from 10.9% down to 9.9% – see Ta-
ble 2), and 3.2% (28.2% to 27.3%) respectively. In terms of pure speaker error
rate, the relative gains are 15.2% (6.6% to 5.6%) and 4.1% (21.9% to 21.0%),
respectively. Similar improvements occur for the “IBM 2 + refine” system over
the “IBM 2” one: Namely, for DER, a 19.4% (9.3% becomes 7.5%) and a 10.9%
(31.1% to 27.7%) relative reduction are observed on the development and eval-
uation sets, respectively; in terms of pure speaker error rates, these reductions
become even more pronounced, at 36.0% (5.0% to 3.2%) and 13.7% (24.8% to
21.4%) relative. Comparing the baseline IBM 1 and IBM 2 systems, we see a
24.2% (5.6% to 4.0%) relative reduction in speaker error rate on the development
test set. On the evaluation test set at optimal thresholds we see a smaller 4.9%
(18.5% to 17.6%) relative reduction between the two baseline systems.

This “picture” changes though, if threshold tuning is performed on the eval-
uation set. Under such scenario, the “IBM 1 + align” shows a 1.1% degradation
in speaker error over the “IBM 1” system. Furthermore, the relative DER gain of
the “IBM 2 + refine” over the “IBM 2” system is reduced to only 4.6% (23.9% to
22.8%), corresponding to a 6.3% relative gain in speaker error (17.6% to 16.5%).

It is worth making two final remarks. The one is that the DER numbers
reported in Table 3 deviate somewhat from the RT07 results reported by NIST
for the IBM system. In particular, the official DER number for the RT07 SPKR
system is 29.83%, contributed by 2.5% missed, 3.6% false alarm, and 23.7%
speaker errors. The reason for the discrepancy in the results is unclear to us,
but is most likely due to the scoring software. The second remark has to do with
the multiple distant microphone (MDM) condition. In our submitted SPKR
MDM system, we have not performed any microphone channel combination (for
example, signal-based or decision fusion). Instead, we used a single microphone,
selected based on the highest signal-to-noise ratio among the available table-top
microphones in each lecture. This turns out to be in almost all cases identical to
the channel selected by NIST for the SDM condition. As a result, MDM SPKR
performance is very close to the SDM one, exhibiting a DER of 30.00%.



6 Conclusions and Future Work

In this paper, we presented the IBM team efforts to improve speaker diarization
(SPKR) for lecture meeting data, as part of the RT07 evaluation campaign. We
first described the speech activity detection (SAD) subsystem that constitutes
a greatly improved version of the one used in conjunction with the IBM speech-
to-text (STT) system in the RT06s evaluation. The improvements resulted in a
74.4% relative reduction in SAD error on development data, by appropriately
tuning the balance between the number of Gaussians used to model the speech
and silence classes. The SAD error rate generalized relatively well from develop-
ment to evaluation data, achieving a 6.3% “diarization” error on the latter.

For speaker diarization, we developed a new approach that over-segments
SAD output, and subsequently initializes, merges, and refines speaker clusters.
This results in a varying number of final speakers, as opposed to our simple
approach employed as part of the RT06s STT system that derived a pre-set
number of speakers. In the newly developed system, we employed different dis-
tance metrics (Mahalanobis, likelihood-based) and Gaussian models (with diag-
onal or full covariance) in the initialization and cluster merging steps, giving rise
to two slightly different systems that were submitted to the SPKR and SASTT
tasks. The systems dramatically improved performance over our RT06s baseline,
achieving diarization errors as low as 7.5% on development data. However, these
results do not carry over to the evaluation set, due to system sensitivity to the
cluster merging threshold. Indeed, diarization error hovers in the range of 28%
and 30% for the two systems.

To reduce such instability, one possibility is to use the modified BIC score [8],
which would hopefully remove the need for such threshold altogether. Replacing
the refinement step with a speaker identification system, iteratively refining the
enrollment against a relevant universal background model may also help. Finally,
we would like to investigate the use of multiple microphone input to improve
SKPR system performance over the single channel system.
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